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Abstract
The evolution from 5G to 6G cellular networks signifies a
crucial advancement towards enhanced robustness and au-
tomation driven by the promise of ubiquitous Artificial In-
telligence (AI) to overhaul network operations, commonly
referred to as AIOps. However, 6G network operators also
need to deal with evolving threats at the edge to ensure data
integrity and availability. We introduce 6G-XSEC, the first
framework that seeks to automatically monitor, analyze, and
explain anomalies and threats at the cellular network edge.
Our framework enhances the emerging Open Radio Access
Network (O-RAN) control plane with run-time analytic ca-
pabilities and explainability. A distinguishing aspect of our
framework is the use of expert referencing, a coupling of
lightweight unsupervised deep learning-based anomaly de-
tection with large language models (LLMs) to first detect,
analyze, and subsequently explain complicated real-world
cellular threats and anomalies at run-time, based on enhanced
security telemetry from the O-RAN data plane. We build a
prototype 6G-XSEC framework and evaluate it against 5 end-
to-end cellular attacks from the literature, achieving 100%
detection rate with our best model. We also propose effec-
tive LLM prompt templates for attack analysis and present
qualitative results from 5 popular LLMs.

CCS Concepts
• Networks → Mobile networks; Programmable networks;
• Security and privacy → Mobile and wireless security;
Intrusion/anomaly detection and malware mitigation.
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1 Introduction
Cellular networks are the backbone of modern wireless com-
munication, impacting numerous sectors from transportation
and entertainment to manufacturing and healthcare. In recent
years, the cellular network standards and associated technolo-
gies have grown rapidly and gained widespread deployment.
It is envisioned that future 6G networks will revolutionize
from connected things to connected intelligence with ubiq-
uitous Artificial Intelligence (AI) [44]. This transformative
leap will enable advanced capabilities such as self-diagnosis,
optimization, fault recovery, and threat mitigation, thereby
enhancing network performance and trustworthiness.

Opportunities Brought by OpenRAN. The drive toward an
intelligent 6G network is fueled by several factors, including
network performance upgrades and the widespread integra-
tion of AI and machine learning (ML) technologies. A key
revolution among these is the software-defined network ar-
chitecture known as OpenRAN (O-RAN), which introduces
unprecedented programmability to traditional cellular infras-
tructures. O-RAN transforms the previously monolithic cel-
lular network into a disaggregated and interoperable mobile
network architecture, as shown in Figure 1. This architec-
ture incorporates principles from software-defined networks,
allowing for modular design and the deployment of "plug-n-
play" cellular control-plane applications (xApps) that perform
dedicated tasks such as network monitoring and management.
While much of the prior R&D has focused on network op-
timization and automation [20, 30, 41, 43, 51], we believe
that the programmability of O-RAN also creates new oppor-
tunities in the security domain to enhance the resilience and
trustworthiness of both public and private 6G networks.

https://doi.org/10.1145/3696348.3696881
https://doi.org/10.1145/3696348.3696881
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Figure 1: O-RAN architecture for 5G / 6G cellular networks.

Case for Explainable 6G Edge Security. In recent years, the
mobile security community has uncovered numerous attack
surfaces and exploits [15]. These vulnerabilities are inher-
ited from prior generations (e.g., LTE), and can be readily
exploited with commodity hardware [10] and open-source
cellular stacks [9] to compromise the security and privacy
of network infrastructures and users at the edge. Examples
of attacks include denial or disruption of cellular services
at base stations [19, 37, 38, 42], leakage of user’s location
and identity [25, 27, 32, 40], and network security down-
grade [18]. To ensure security at the 6G edge, ideal solutions
require both analytic capabilities and explainability. Effective
cellular edge analytics refer to detection capabilities for not
only current but also unseen and evolving threat patterns and
variants. Moreover, explainability, i.e., the ability to explain
why there is an attack, is also crucial for network operators to
understand root causes and take corresponding actions, which
also increases the network’s trustworthiness.

Technical Challenges. While O-RAN provides a programmable
way to realize novel control-plane applications, there are still
high-level technical challenges. First, Visibility, or the ability
to capture relevant threat modalities from network data, is the
foremost challenge for every security application. However,
the default O-RAN standard only provides limited support
for security visibility, as evident by the existing service mod-
els [1, 6–8] that have lacked the focus and fidelity necessary
to drive the development of practical security applications.
Second, the Analytic capability is required to analyze sophis-
ticated cellular network traffic and identify potential security
threats. In the security domain, this is less studied compared
to other networks and faces many challenges such as scala-
bility [31, 55, 56, 59, 61]. Third, Explainability [58] is chal-
lenging due to the requirement of highly specialized domain
insights and knowledge from massive 3GPP cellular specifi-
cations [13, 14], which is impossible to process manually.

Envisioned Framework. We describe our vision of an AI-
driven and explainable edge security framework, namely 6G-
XSEC, for the O-RAN architecture. It involves novel data-
plane and control-plane extensions (e.g., xApps), enabling
the network with advanced capabilities to monitor, analyze,

and explain runtime anomalies and threats. Our preliminary
results suggest that this framework not only achieves 100%
detection rate for 5 types of unseen cellular attacks but also ex-
plains why these threats deviate from benign traffic. Looking
forward, we envision our framework will enable lower-skilled
and private cellular operators to rapidly detect, diagnose, and
recover from runtime faults and attacks, driving toward the
goal of explainable AIOps in future-generation networks.

Contributions. Our paper makes the following contributions:
• Design of a novel explainable edge security framework

based on the cellular O-RAN architecture.
• Development of xApps employing unsupervised anomaly

detection and LLM-based expert referencing to detect and
analyze emerging threats and anomalies at run-time.

• Demonstration of a prototype system on an O-RAN com-
pliant cellular network testbed.

• Preliminary evaluation of unsupervised threat detection
with practical cellular traces and 5 attacks, showing that it
can effectively detect unseen cellular threat patterns.

• Evaluation of the expert referencing approach using 5 pop-
ular LLMs against 5 attacks.

2 Relevant Background
2.1 OpenRAN Architecture
A typical cellular network is broken down into several entities.
User Equipment (UE) represents end-user devices. The Radio
Access Network (RAN), also commonly known as a base
station, or a gNodeB in a 5G context, serves as an access
point to relay user traffic. Core Network is the mobile network
backend connecting users to the external Internet.

O-RAN Data Plane. As shown in Figure 1, the OpenRAN
(O-RAN) architecture [4] follows 3GPP’s functional split [11]
to divide the monolithic RAN design into logical components:
the Radio Unit (O-RU), Distributed Unit (O-DU), and Cen-
tral Unit (O-CU). The O-RU is the typical radio hardware
deployed in the front-haul network, responsible for handling
layer-1 (L1) physical radio signals from nearby user equip-
ment. The O-DU is a logical component hosted at the network
edge, managing layer-2 (L2) functions such as Media Access
Control (MAC). The O-CU handles layer-3 (L3) control proto-
cols like the Radio Resource Control (RRC) [14]. The O-CU
connects to core network (CN) functionalities, such as the
Access and Mobility Management Function (AMF) and the
User Plane Function (UPF) of the 5G core. The O-RAN data
plane components communicate through standard and open
interfaces, such as F1 connecting O-DUs and O-CUs [12].

O-RAN Control Plane. The control logic of O-RAN is sepa-
rated from the data plane based on the Software-Defined Net-
working (SDN) principles. The O-RAN control functions are
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Figure 2: Illustration of two distinct attacks exploiting unpro-
tected cellular messages between a UE and RAN.

implemented in Near Real-time RAN Intelligent Controllers
(nRT-RICs), which act as control service proxies connected
to the RAN via the standard E2 interface [5]. The nRT-RIC
hosts various modular xApps that implement customized net-
work management functions such as monitoring, analytics,
and control [4]. The interactions between the control and data
planes are defined by four basic E2 primitives: report, insert,
control, and policy. To interact, each xApp needs to define
E2 Service Models (E2SMs) as function-specific protocols by
using these E2 primitives, based on the generic E2 Applica-
tion Protocol (E2AP) [7]. For instance, the O-RAN Alliance
has demonstrated several exemplar E2SMs for key perfor-
mance monitoring and network slicing management [1, 8].
O-RAN also defines different latency requirements. The con-
trol loop of a nRT-RIC completes within 10ms to 1s, while
time-insensitive tasks, e.g., ML model training, are handled
within the Service Management and Orchestration (SMO)
framework by rApps on non-real-time RICs.

2.2 Cellular Threat Landscape
Threat Model. We focus on a specific threat model within
the cellular network domain. In this model, adversaries at
the network edge attempt to compromise devices and infras-
tructure through the open wireless interface. These adver-
saries exploit vulnerabilities in cellular protocol standards
by transmitting, flooding, and hijacking unprotected protocol
messages over the air, while still adhering to cryptographic
assumptions [15, 32, 37, 38, 48, 62]. This threat model is
highly practical because adversaries can use readily available
software-defined radios (SDRs) that work with open-source
cellular software stacks, allowing them to easily program and
execute malicious attack logic as a rogue UE or an adversarial
relay in the victim’s network [9, 33]. On the other hand, we
assume the internal components and communication in the
networks, including the base stations, the core network, and
the O-RAN control plane, are trusted.

Anomalies Exhibited by Attacks. To detect and counter
the aforementioned attacks, the natural solution is to inspect
anomalies from the cellular traffic, as the attack traffic likely
involves highly unusual traces and payloads. In the later
framework descriptions, we utilize this key principle to design
our attack detection mechanisms. In Figure 2, we illustrate
two concrete attacks and discuss below how they manifest
deviated anomalies from normal cellular traffic.
• Univariate Anomalies. Figure 2a illustrates a benign cel-

lular trace along with another representing an identity ex-
traction attack conducted by Man-in-The-Middle (MiTM)
attackers [32, 40]. In the attack, the adversary overwrites
the downlink authentication request message to maliciously
ask the victim UE to transmit its identifier in plain text.
Since the identifier is bound to a specific user’s SIM, this
step allows tracking of the victim’s location. This sequence
exhibits an out-of-order message sequence from normal
traffic where the UE typically responds to the authentica-
tion request with the corresponding response payload.

• Multivariate Anomalies. Figure 2b describes a Denial-
of-Service (DoS) attack targeting the RAN from a mali-
cious UE. The UE establishes multiple fabricated RRC
connections at the authentication stage, which consumes
the RAN’s resources and prevents other legitimate UEs
from connecting [37, 38]. This attack differs from benign
traffic in that the network observes malicious patterns with
both abnormal message sequences and device parameters.
In this instance, the RAN is flooded with a rapid succession
of uncompleted UE connection requests from a stream of
unique temporary identifiers (RNTI), and thus these vari-
ables jointly constitute the attack pattern deviated from
normal traffic.

3 6G-XSec Framework Overview
A design overview of the 6G-XSEC framework architecture
is shown in Figure 3. First, the RAN data plane is extended
to collect security telemetry and report through the O-RAN
standard E2 interface to the nRT-RIC (§3.1). Next, the teleme-
try is analyzed by an unsupervised anomaly detector xApp
(MOBIWATCH) to identify deviated traffic patterns (§3.2).
Finally, the anomalous traces are processed by an LLM-based
expert (§3.3) to generate insights for threat explanation. The
following describes each of these components.

3.1 Security Telemetry Collection
Telemetry Definition. Data telemetry is the foundation for
any data-driven AI techniques. However, existing service
models in the O-RAN standards only provide coarse-grained
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Figure 3: Overview of the 6G-XSEC framework. Security telemetry is extracted via E2 interfaces from the cellular data
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provide capabilities for anomalous traffic detection as well as anomaly explanation and remediation.

security telemetry that mainly focuses on network perfor-
mance monitoring [1], which is thus inadequate for monitor-
ing and detecting sophisticated cellular threats at the edge [32,
37, 38, 48, 62]. To address this limitation, we adopt the design
of MOBIFLOW security telemetry from our prior work [60],
which extends the cellular data plane to collect fine-grained
states and statistics at the cellular protocol level. The collected
telemetry is formulated as multivariate time-series data en-
tries [17], where each telemetry entry 𝑥𝑖 is collected at each
control message transmission:

𝑥𝑇𝑖 = [𝑡𝑖 ,𝑚𝑖 , 𝑝1𝑖 , 𝑝2𝑖 , 𝑝3𝑖 ..., 𝑝𝑘𝑖 ]
where 𝑚𝑖 represents the message, and 𝑝𝑘𝑖 denotes the UE-
specific parameter from a defined parameter set 𝑝𝑘𝑖 ∈ 𝐾 col-
lected at timestamp 𝑡𝑖 . Therefore, a time series collected from
the RAN spanning 𝑀 messages is denoted by:

𝜏 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑀 }

Telemetry Collection. We provide an example list of MOB-
IFLOW telemetry in Table 1. The message𝑚𝑖 could be col-
lected from RRC and NAS protocol packets [13, 14]. The
parameter set 𝐾 could include UE-specific identifiers and
state parameters. The listed telemetry is readily extracted
from standard RAN interfaces, such as F1 Application Proto-
col (F1AP) [12] and NG Application Protocol (NGAP) [11].
By instrumenting these interfaces or parsing the pcap streams,
the RIC agent at the RAN data plane extracts, encodes, and
reports the telemetry to the nRT-RIC. More precisely, the
telemetry report is based on an established subscription be-
tween an xApp and the RAN, and the telemetry is eventually
decoded and handled by the custom xApp logic. To comply
with the E2SM standard, we extend the E2SM-KPM [1] ser-
vice model from the O-RAN reference implementation. This
service model enables the RIC agent to report security teleme-
try via the E2 report operation [7] per time interval, where the
telemetry can be encoded as (key, value) data. Upon receiv-
ing the security telemetry, the xApp stores it in the Shared
Data Layer (SDL) which is a centralized database that can be
accessed by other nRT-RIC services and xApps.

Category Telemetry Description

Message
RRC Message Uplink / Downlink Radio Resource Control

(RRC) protocol message [14]

NAS Message Uplink / Downlink Non-Access-Stratum
(NAS) protocol message [13]

Identifier
RNTI Radio Network Temporary Identifier
S-TMSI Temporary Mobile Subscriber Identity
SUPI Subscription Permanent Identifier

State
Cipher_alg Ciphering algorithm employed by the UE
Integrity_alg Integrity algorithm employed by the UE
Establish_cause RRC establishment cause from the UE

Table 1: An example list of MOBIFLOW security telemetry col-
lected from the cellular data plane.

3.2 Unsupervised Anomaly Detection
Motivation. Typical machine learning techniques for detect-
ing security threats are broadly classified into either super-
vised or unsupervised approaches. Particularly in the cellu-
lar domain, one major challenge for training a supervised
classifier lies in the scarcity of well-labeled datasets in the
wild. While there are a few public datasets available [26,
31, 47, 54], they are collected from LTE networks or do not
involve control-layer traffic. Another major challenge is ob-
taining adversarial data samples (e.g., attack traces). Due to
these reasons, we adopt an unsupervised approach, which
has been widely used in security intrusion or anomaly detec-
tion [29, 49]. From the attack descriptions in §2.2, cellular
attacks typically exhibit certain levels of group anomalies [50]
(e.g., out-of-order message sequences in Figure 2a), and thus
we hypothesize that these outliers are distinguishable from
benign traffic. Therefore, our objective is to train an unsuper-
vised neural network only on readily available benign cellular
traffic data, through which the model learns the latent rep-
resentations and is capable of estimating how to distinguish
unknown data deviations from the benign data distributions.

Formulation. Our problem setup is similar to prior mul-
tivariate outlier detection tasks [17, 36, 57]. The unsuper-
vised anomaly detection xApp consumes the multivariate
time series 𝜏 as the input. We further use a sliding window
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of size 𝑁 to convert the time-series data into sequences 𝑆 =

{𝑆1, ..., 𝑆𝑀−𝑁+1}, where each sequence 𝑆𝑖 = {𝑥𝑖 , ..., 𝑥𝑖+𝑁−1}.
All categorical variables within each sequence 𝑆 is one-hot en-
coded. The objective is to learn a mapping function 𝜙 : 𝑆 ↦→ 𝑍

where 𝑍 ∈ R𝑀−𝑁+1. Therefore, when given an unseen se-
quence 𝑆𝑛 = {𝑥𝑛, ..., 𝑥𝑛+𝑁−1}, the model should output an
anomaly score measuring the extent to which the given sam-
ple deviates from the trained data. Based on a predefined
threshold, a final decision 𝑦 ∈ {0, 1} is produced where 1
indicates the given sequence is anomalous.

Approaches. We describe the unsupervised deep learning
approaches to detect anomalous behaviors indicative of faults
or security threats from the telemetry. In this context, we
explore various unsupervised techniques for outlier detec-
tion [29, 36, 46, 49, 63]. We train these models with normal
data (devoid of any attacks) and test them on unseen data that
has a mixture of normal and abnormal flows.
• Autoencoders: Autoencoders [53] are neural network ar-

chitectures that compress an input vector to a lower di-
mensional representation and use that to create the original
input vector, formulated as 𝑆 = 𝑓𝐴𝐸 (𝑆). In doing so, they fit
their internal parameters to minimize the reconstruction er-
ror between the input and the reconstructed output, thereby
learning to represent the input data distribution. Any outlier
sequences 𝑆 when passed through the model will exhibit
a large reconstruction error (e.g., mean square error), thus
indicating an outlier.

• Sequence Modeling: Owing to the fact that our security
telemetry captures the cellular protocol message flows,
they can be naturally represented as sequence data. We fit
a Long Short Term Memory model (LSTM) [35] model
to this representation. The model is trained on normal
flow sequences, to predict the next telemetry, denoted by
𝑥𝑖+𝑁 = 𝑓𝐿𝑆𝑇𝑀 (𝑥𝑖 , ...𝑥𝑖+𝑁−1), depending on the window size
𝑁 . If the actual telemetry 𝑥𝑖+𝑁 deviates from the model’s
predicted output 𝑥𝑖+𝑁 , it is thus considered an outlier.

Deployment. These unsupervised anomaly detection mod-
els are integrated into an xApp, namely MOBIWATCH in the
nRT-RIC, as shown in Figure 3. Through the internal com-
munication interfaces (e.g., the message routing mechanisms
in the O-RAN reference implementation [3]), the xApp can
access the SDL for the dynamic security telemetry from the
networks. Regarding the model training and deployment, it
can be conducted either in an offline fashion or in the Ser-
vice Management and Orchestration (SMO) infrastructure
on the O-RAN control plane [52]. Incoming telemetry for
real-time inference is done with the deployed models in the
xApp, which outputs the decision of whether a given input
sequence is anomalous and requires further analysis.

3.3 LLM-based Expert Referencing
LLMs have exhibited exceptional text summarization, com-
prehension, and deduction abilities [22] including network
management and incidence analysis [34, 39]. Motivated by
these examples, we investigate how to leverage LLM’s de-
duction capabilities for explainable security [58], specifically
to generate domain-specific insights including what are the
anomalies (classification), why the cellular sequence is anoma-
lous (explainability), who is responsible (attribution), and how
to mitigate this threat (remediation).

Figure 3 depicts the integration of a control-plane xApp for
LLM-based expert referencing. Once MOBIWATCH flags a
cellular sequence as anomalous, the sequence (plus its con-
text window) is passed to the LLM xApp. The motivation
for chaining a lightweight anomaly detector and the LLM
analyzer is that LLMs are prohibitively large and expensive to
deploy and invoke in a cellular network as it may introduce a
high volume of cellular traffic in practice. The MOBIWATCH
xApp serves as a pre-filter that extracts only the meaning-
ful and novel network incidents that require further analy-
sis. Additionally, the results from MOBIWATCH and LLM
could be cross-compared to ensure the decisions are indeed
reliable. Upon receiving the sequences, the xApp constructs
inputs based on prompt templates and accesses the LLMs
through RESTful web APIs from either a pre-trained LLM
(e.g., GPT-4 [16]) or a locally fine-tuned model. However,
LLM’s decision might not be accurate, also known as the
hallucination problem [64]. As such, human supervision is
required in cases such as when the LLM and the anomaly
detector generate contradictory results.

4 Preliminary Evaluation
One of the major challenges in cellular security research is the
scarcity of open traffic datasets, especially adversarial sam-
ples with anomalous or attack traces. As a proof-of-concept,
we have built a 5G network testbed for experimentation and
data collection as 6G standards are currently under develop-
ment [2]. In support of open science, we have released the
source code and datasets1 to reproduce our system and results.

Testbed Setup. We have built an end-to-end 5G standalone
(SA) network with open-sourced software and commodity
hardware platforms. Specifically, we use OpenAirInterface
(OAI) [9] as our gNodeB (CU and DU) and core network
implementations, and a commodity software-defined radio
(SDR) Ettus USRP B210 as the RU front-end [10]. The OAI
CU is extended with an E2 RIC agent that extracts security
telemetry and handles communication with the nRT-RIC’s E2
interface. We adopt the O-RAN Software community (OSC)’s
nRT-RIC reference implementation [3], which allows us to
1Our source code and datasets are available at https://github.com/5GSEC/
MobiWatch

https://github.com/5GSEC/MobiWatch
https://github.com/5GSEC/MobiWatch
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Dataset Model Accuracy Precision Recall F1 Score

Benign Autoencoder 93.23% 93.23% N/A N/A
LSTM 91.15% 91.15% N/A N/A

Attack Autoencoder 100% 100% 100% 100%
LSTM 95.00% 88.68% 100% 94.00%

Table 2: Summary of detection performance of the two deep
learning models on benign and attack datasets.

realize our architecture in Figure 3. The whole testbed setup
is deployed in a standalone Ubuntu 20.04 desktop with 12
Intel i7 CPU cores and 32GB RAM.

Dataset Collection. We collect both benign and attack datasets
from our testbed. To ensure the diversity of the benign cellular
traffic, we first collected traffic from four different commodity
5G smartphone models including Google Pixel 5 and 6, Sam-
sung Galaxy A22, and A53. In addition, we leverage COLOS-
SEUM, a software-defined large-scale 5G network emulator
capable of generating traffic in various scenarios [21], and
we deployed our test network with open-sourced UEs from
OAI. To collect data, we instrument the F1AP and NGAP
interface to obtain pcap streams, which are further parsed into
MOBIFLOW security telemetry formats. In summary, we col-
lected 2.5MB of pcap files for benign traffic, constituting over
100 UE sessions with the network. For the attack dataset, we
implemented 5 cellular attacks by inserting malicious logic
into the OAI’s UE stack [32, 37, 38, 40]. To ensure no real-
world devices are affected, we conducted the attack dataset
collection on COLOSSEUM as well.

Dataset Labeling. We developed the following two principles
to label our datasets. First, all traces from benign datasets
are naturally considered benign. Second, the attack datasets
contain a mixture of benign and malicious sequences as each
attack occurs at a certain point within a network session. We
manually identify and label each malicious telemetry entry
𝑥𝑖 ∈ 𝜏 , and consider any sequences that involve 𝑥𝑖 to be
malicious, i.e., {𝑆𝑖−𝑁+1, ..., 𝑆𝑖 } for window size 𝑁 .

4.1 Can Unsupervised Deep Learning Models
Detect Cellular Attacks?

We evaluate whether a lightweight unsupervised deep learning
model described in §3.2 can effectively detect deviated pat-
terns that represent anomalies and threats in cellular networks.
We use the benign dataset to train our models, by leveraging
categorical features in the security telemetry described in Ta-
ble 1 including the control messages and device identifiers
such as UE’s RNTI and TMSI. After training, we select a
99% percentile threshold among the reconstruction errors for
anomaly detection, assuming 1% outliers within the training
set caused by network noise. Table 2 summarizes the detec-
tion performance from both the Autoencoder and the LSTM

Attack 
Traces

Benign 
Traces

Detection Threshold

1

2 2 2

Attack Pattern 1: 
Blind DoS

Attack Pattern 2: 
BTS DoS

Figure 4: Visualization of our Autoencoder’s reconstruction
errors of attack dataset sequences. ① and ② respectively high-
light similar anomaly patterns for attack events within the same
category (①: Blind DoS attack and ②: BTS DoS attack).

models. Our results show that both models deployed at MOBI-
WATCH correctly classified all attack sequences as anomalous,
indicating 100% recall or no false negatives. However, we ob-
serve a small portion of false positives (<10%) in both the
benign (through cross-validation) and the attack datasets. The
major causes are unusual message sequences and network
interference (e.g., RRC message retransmissions). Since the
dataset we have collected in this paper is relatively small, we
intend to expand our dataset and evaluation methodology as
important future work.

To further facilitate analysis of our results, we visualize the
reconstruction errors of the attack sequences from the Autoen-
coder model in Figure 4. In the figure, all data points above
the threshold bar are considered outliers, and those under the
bar are considered benign. Interestingly, we observe similar
patterns among attack events of the same attack type. For
instance, ① and ② represent the Blind DoS and BTS DoS at-
tacks [38], respectively, in which different attack instances of
the same type exhibit highly similar group anomaly patterns
with respect to the reconstruction errors. This observation
also holds for the remaining attack types. As a result, this
feature is potentially useful for training a supervised attack
classifier to recognize and cluster events of different attack
types based on their reconstruction error patterns.

Takeaway: Our preliminary results show that lightweight
unsupervised anomaly detection models can detect unseen
threat patterns by training only on benign cellular traffic.

4.2 Can LLMs Explain Cellular Anomalies?
Following §3.3, we studied whether LLMs can explain why
a cellular sequence is benign or anomalous - akin to a secu-
rity analyst. We start with existing web-based LLMs (e.g.,
ChatGPT-4o [16]) and zero-shot prompting strategies (i.e., no
example provided). Table 3 presents the overall performance,
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Attack / Trace Chat Gemini Copilot Llama3 Claude 3
GPT-4o Sonnet

BTS DoS [38] ✓ ✓ ✓ ✗ ✗
Blind DoS [38] ✓ ✗ ✗ ✓ ✗
Uplink ID Extr [32] ✗ ✗ ✗ ✗ ✓
Downlink ID Extr [40] ✓ ✓ ✗ ✓ ✓
Null Cipher & Int. [37] ✓ ✓ ✗ ✓ ✓

Benign Sequence 1 ✓ ✓ ✓ ✓ ✓
Benign Sequence 2 ✓ ✓ ✓ ✓ ✓

Table 3: Evaluation results from different LLMs. ✓ indicates
the LLM correctly classifies the attack or benign sequence, and
✗ indicates the LLM produced wrong decisions for that trace.

in which we tested five baseline LLMs and manually verified
if they can provide correct explanations for each attack. To
avoid bias, we also tested with two other benign sequences.
Surprisingly, without any examples, all existing LLMs have
demonstrated capabilities to analyze cellular protocol data
and distinguish between anomalous and benign traces with
accurate explanations. Among these baselines, ChatGPT-4o
performs relatively well as it only missed one attack in total.

To better illustrate the response quality, Figure 5 presents
the prompt template and an example response from ChatGPT-
4o. This response shows that the LLM can accurately identify
a potential signaling storm (equivalent to BTS DoS [38] in
Figure 2b) based on the repeated RRC message patterns. For
more complicated attacks such as Blind DoS [38], some base-
line LLMs could still extract implicit relations (e.g., replayed
TMSI numbers in different UE sessions) and thus correctly
suggest the attack. Most LLMs fall short in detecting uplink
identity extraction attack [32] as it exhibits standard compli-
ant protocol traces and is thus challenging to distinguish from
normal traces. To further evaluate the stability of LLM’s rea-
soning, we conducted repeated experiments on ChatGPT-4o,
and observed consistent results as in Table 3.

Takeaway: Existing baseline LLM models are promising
to classify and explain complex cellular anomalies and
attacks with only zero-shot prompting.

5 Conclusion, Discussion, and Future Work
We presented an end-to-end framework based on O-RAN
to illustrate how AI could drive cellular networks toward
automatic and explainable threat detection and mitigation.
The following discusses the current limitations, as well as the
challenges and opportunities for 6G and OpenRAN networks.

Limitations. As a defense framework deployed on the net-
work side, MOBIWATCH faces challenges in handling certain
types of cellular threats. These include downlink attacks that
drop protocol messages and rogue base stations that directly
communicate with user devices. Another limitation is the
difficulty in distinguishing between anomalous events and

You are an AI security analyst tasked with identifying 
potential attacks within a 5G network. You have 
access to a cellular traffic sequence of attributes: 
<DATA_DESCRIPTIONS>
<DATA>
Determine whether this sequence is anomalous or 
benign and explain why. Next, if the sequence 
constitutes attacks, provide the top 3 most possible 
attacks, and describe the implications.

… it is likely that the sequences are 
anomalous. The uniformity and the 
unchanging TMSI values indicate 
potential issues or attacks.
Signaling Storm: … a large number 
of connection setup requests to 
overwhelm the network. The 
repeated messages can cause 
excessive load on the gNodeB …

Prompt Template Response Example

Figure 5: Prompt template and response from ChatGPT-4o
showing an accurate analysis of a BTS DoS attack event (Fig-
ure 2b) based on cellular security telemetry.

actual attacks. For example, the transmission of a plain-text
user identity could indicate either an identity extraction at-
tack [32, 40] or just an unusual network event. This ambiguity
can lead to false positives or false negatives, highlighting the
need for further studies to better monitor and understand these
threats in real-world networks.

Automated Network Responses. Our preliminary work has
demonstrated that foundation models such as GPT-4 are ca-
pable of generating remedies when provided with abnormal
or attack traces. This highlights the potential for future cellu-
lar networks to perform self-management and control, such
as security countermeasure deployment and fault recovery
through data plane control primitives such as dApps [28]. The
O-RAN E2SM’s RAN Control specification [8] defines a set
of actions that could be incorporated into the AI pipeline.
Reinforcement learning approaches [51] may also be adopted
to ensure the network maintains healthy states.

Specialized LLM for 6G. While we show that baseline LLMs
can provide accurate reasoning for cellular network data,
these models are known to suffer from various weaknesses
such as hallucination [64]. To address these issues, one could
adopt Retrieval-Augmented Generation (RAG) [45] to aug-
ment prompts or adapt the pre-trained LLMs to specialized
cellular domains (e.g., through fine-tuning), by leveraging
accurate cellular protocol knowledge (e.g., those from 3GPP
specifications [12]). Within this domain, prior work has used
such documentation to guide security testing [23, 24].

Zero-Trust O-RAN Architecture. The adoption of O-RAN
architecture in future cellular networks also opens new attack
vectors. Unprotected O-RAN interfaces and services [5] could
be potentially exploited to compromise network availability
and user privacy. Malicious adversaries may poison the AI
models with malicious telemetry to drive the network into
abnormal states. As such, a zero-trust and resilient O-RAN
architecture is necessary to prevent these threats in advance.
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